What can genetics tell us about autism spectrum disorder?

  • Autism Research
Speaker Stephan Sanders, B.M.B.S., Ph.D.
University of California, San Francisco
Date & Time


Location

Gerald D. Fischbach Auditorium
160 5th Avenue
New York, NY 10010 United States

Autism Research

Autism Research lectures bring together scientists and scholars to discuss diverse and important topics related to autism. The lectures are open to the public and are held at the Gerald D. Fischbach Auditorium at the Simons Foundation headquarters in New York City. Tea is served prior to each lecture.

Video Thumbnail

By clicking to watch this video, you agree to our privacy policy.

 
On 22 March 2017, Stephan Sanders presented an update on the current state of genetics research in autism, highlighting some of the key findings that remain to be discovered, and discussing how these findings could ultimately benefit individuals with autism and their families.

His talk was part of the Simons Foundation Autism Research lecture series.

About the Lecture

It has been known that autism spectrum disorder is primarily caused by genetic factors for several decades. The past 10 years have seen great progress in finding some of the genes responsible and in building a map of what other types of genetic variants may contribute. These findings have been used both to provide insight into the biology of autism and, in the clinic, to identify individuals with specific genetic variants.

In this lecture, Stephan Sanders presented an update on the current state of genetics research in autism, highlight some of the key findings that remain to be discovered, and discussing how these findings could ultimately benefit individuals with autism and their families.

About the Speaker

Stephan Sanders trained as a pediatric physiscian in the United Kingdom before pursuing a research career in genomics and bioinformatics. His work has helped characterize the role of de novo mutations in the etiology of autism and identified multiple autism risk loci, including duplications of the 7q11.23 Williams syndrome region (Sanders et al., Neuron, 2011) and mutations in the sodium channel gene SCN2A (Sanders et al., Nature, 2012). His work on the integration of copy number variation and exome data across multiple autism cohorts recently identified 71 autism risk loci (Sanders et al., Neuron, 2015). In addition, he worked as part of a group that integrated spatiotemporal gene expression data from the human brain with these autism-associated genes (Willsey et al., Cell, 2013). This approach has implicated deep-layer glutamatergic neurons in the frontal cortex during mid-fetal development in the causation of autism. His lab has three main research aims: 1) Understanding the genetic basis of childhood neurodevelopmental conditions, in particular autism; 2) Understanding how these genetic factors lead to the conditions; and 3) Understanding the mechanism that leads to the male bias in autism diagnosis, in particular through identifying the biological basis of the female protective effect.

Past Lectures

Altered somatosensory processing in autism spectrum disorders: Mechanisms and emerging therapeutic opportunities

David Ginty, Ph.D.Professor of Neurobiology, Harvard University

On April 24, 2019, David Ginty presented his work on the neurobiological basis of touch over-reactivity in mouse models of autism spectrum disorder (ASD). He also discussed new pharmacological approaches aimed at reducing sensory over-reactivity and potentially improving cognitive and behavioral abnormalities associated with ASD.

Mapping human cerebral cortex: Structure, function, connectivity, development and evolution

David Van Essen, Ph.D.Alumni Endowed Professor, Washington University in St. Louis

On April 3, 2019, David Van Essen provided an overview of basic principles of cortical organization and connectivity from studies of laboratory animals and analyses of individual variability in humans. He also highlighted a new map (‘parcellation’) of the human cerebral cortex based on data from the Human Connectome Project.

The genetic influences on autism spectrum disorder risk

Elise Robinson, Sc.D.Assistant Professor, Harvard T.H. Chan School of Public Health
Associate Member, Broad Institute

On January 30, 2019, Elise Robinson provided an overview of the role that genetic factors play in autism spectrum disorders and discussed the next steps to further understand autism genetics.

Subscribe to our newsletter and receive SFARI funding announcements and news