The predictive impairment hypothesis in autism: An empirical assessment

  • Autism Research
  • Speakers
  • Pawan Sinha, Ph.D.

    Professor, Massachusetts Institute of Technology

    Dagmar Sternad, Ph.D.

    Professor, Northeastern University

Date & Time


Gerald D. Fischbach Auditorium
160 5th Avenue
New York, NY 10010 United States

Tea 4:15-5:00pm
Lecture: 5:00-6:15pm

Autism Research

Autism Research lectures bring together scientists and scholars to discuss diverse and important topics related to autism.

Video Thumbnail

By clicking to watch this video, you agree to our privacy policy.

On December 12, 2018, Pawan Sinha and Dagmar Sternad reviewed a recently proposed hypothesis about the nature of autism spectrum disorders (ASD) that posits that the common traits of the disorder are manifestations of an individual’s difficulty in making predictions about cause and effect.

Their talk was part of the Simons Foundation Autism Research lecture series.

About the lecture

In 2014, researchers proposed a new hypothesis about the nature of autism. This hypothesis posits that the common traits of autism spectrum disorders (ASD) are manifestations of an individual’s difficulty in making predictions about cause and effect. For an individual with compromised prediction skills, the world is seemingly a “magical” place where events occur unexpectedly and without reason. This unpredictable environment proves overwhelming and comprises the individual’s ability to interact with it.

The proposal, along with several related conceptualizations, has spurred several targeted empirical investigations of predictive processes in autism. In this lecture, Pawan Sinha and Dagmar Sternad reviewed some of the data accumulated so far.

Sinha considered both positive and negative findings and described efforts to test the proposal further. His lab has focused their studies on three domains: sensory habituation, motor control and high-level cognition. In each of these domains, the experiments probed whether the performance of individuals with autism is affected in a manner consistent with difficulty in prediction. The picture that has emerged has provided support for the hypothesis, although not unequivocally so.

Sternad reviewed her group’s experimental work examining the action of catching a ball in realistic and virtual environments. The scenario requires both the prediction of the ball’s path and the internal prediction needed to successfully complete the catching motion. A series of experiments that titrate the degree of prediction has yielded results consistent with the hypothesis: kinematic data and muscle activation reveal selective impairments in ASD for actions where prediction is dominant. Control tasks without predictive elements, such as reaction time and postural balance, do not show differences.

About the Speakers

Pawan Sinha is a professor of vision and computational neuroscience in the Department of Brain and Cognitive Sciences at Massachusetts Institute of Technology (MIT). He received his undergraduate degree in computer science from the Indian Institute of Technology, New Delhi, and his master’s and doctoral degrees from the Department of Computer Science at MIT. He was at the University of California, Berkeley, for the first year of his graduate studies. Sinha’s laboratory uses a combination of experimental and computational modeling techniques to focus on understanding how the human brain learns to recognize objects through visual experience and how objects are encoded in memory. A key initiative of the lab is Project Prakash. This effort seeks to accomplish the twin goals of providing treatment to children with disabilities and also understanding mechanisms of learning and plasticity in the brain.

Dagmar Sternad received her bachelor’s degree in movement science and linguistics from the Technical University and the Ludwig Maximilians University of Munich and her Ph.D. in experimental psychology from the University of Connecticut. From 1995 until 2008, she was an assistant, associate professor, and later a full professor, at Pennsylvania State University in integrative biosciences and kinesiology. Since 2008, she holds an interdisciplinary appointment as full professor in the departments of Biology, Electrical and Computer Engineering, and Physics at Northeastern University in Boston. She is a member of the Center for Interdisciplinary Research on Complex Systems at Northeastern. Her research is documented in more than 150 peer-reviewed publications and book chapters, as well as several books.

Past Lectures

Transgenerational inheritance of pathogen avoidance or: How getting food poisoning might save your species

Coleen T. Murphy, Ph.D.James A. Elkins, Jr. Professor in the Life Sciences, Princeton University

In this lecture, Coleen Murphy will present how she and her colleagues found that a single exposure to purified small RNAs isolated from pathogenic Pseudomonas aeruginosa (PA14) is sufficient to induce pathogen avoidance in the treated worms and four subsequent generations of progeny. The RNA interference (RNAi) and PIWI-interacting RNA (piRNA) pathways, the germline and the ASI neuron are all required for avoidance behavior induced by bacterial small RNAs and for the transgenerational inheritance of this behavior. A single P. aeruginosa non-coding RNA, P11, is necessary and sufficient to convey learned avoidance of PA14, and its C. elegans target, maco-1, is required for avoidance. Their results suggest that this non-coding-RNA-dependent mechanism evolved to survey the microbial environment of the worm, use this information to make appropriate behavioral decisions and pass this information on to its progeny.

What do we mean by ‘autism risk genes’?

David Ledbetter, Ph.D.
Chief Clinical Officer, Dascena

Joseph Buxbaum, Ph.D.
Director, Seaver Autism Center
Professor, Psychiatry, Neuroscience, Genetics and Genomic Sciences
Vice Chair for Research and Vice Chair for Mentoring, Psychiatry, Icahn School of Medicine at Mount Sinai

Heather Mefford, M.D., Ph.D.
Full Member, St. Jude Children’s Research Hospital

David Ledbetter and Joseph Buxbaum discussed whether there are genes for which mutations confer risk specific to autism or whether these genes are really conferring general risk of disrupted brain development. The discussion was moderated by Heather Mefford.

Small molecules, genes and antisense oligonucleotides: Industry perspectives on treatment development for ASD

Federico Bolognani, M.D., Ph.D.
Vice President, Head of Clinical Science, Axial Therapeutics

Stuart Cobb, Ph.D.
Chief Scientific Officer, Neurogene; Research Fellow, University of Edinburgh

Yael Weiss, M.D., Ph.D.
Vice President, Business Development, Ultragenyx

Randy Carpenter, M.D.
Chief Medical Officer, Rett Syndrome Research Trust; Co-Founder, Allos Pharma

Federico Bolognani, Stuart Cobb, and Yael Weiss joined a panel to discuss new industry developments on the use of small molecules, gene therapy and antisense oligonucleotides as treatment approaches for autism spectrum disorders (ASD). The panel discussion was moderated by Randall Carpenter.

Subscribe to our newsletter and receive SFARI funding announcements and news