Many children with autism have unusually high numbers of synapses, or connections between neurons, particularly in the cortex, which may result from overgrowth and a disruption of neuronal pruning during childhood. Pruning and reshaping of neurons pares down the number of synapses in the brain while eliminating inappropriate synapses that lead to over-connectivity between brain regions, and possibly inappropriate learning, behavior and seizures. David Sulzer and his colleagues at Columbia University hypothesize that autism-associated mutations in the tuberous sclerosis gene, TSC, can cause over-connectivity when the target of TSC, the mTOR pathway, interferes with normal neuronal pruning.